High Impact Indicators

<table>
<thead>
<tr>
<th>RLA</th>
<th>Social Studies</th>
<th>Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicator</td>
<td>What to look for in student work: The student can</td>
<td>Indicator</td>
</tr>
<tr>
<td>R.3.1: Order</td>
<td>• locate a single, discrete event or plot point in texts.</td>
<td>• differentiate between the concepts of topic and main idea.</td>
</tr>
<tr>
<td>sequences of</td>
<td>• identify chronological and non-chronological sequences of events within</td>
<td>• identify the topic and/or main idea of a piece of text.</td>
</tr>
<tr>
<td>events in texts</td>
<td>texts.</td>
<td>• identify supporting details for a given main idea.</td>
</tr>
<tr>
<td>*Primarily</td>
<td>• describe the progression from one event to the next in a text.</td>
<td>• summarize a piece of text.</td>
</tr>
<tr>
<td>measured with</td>
<td>• re-order events presented in non-chronological order in texts into</td>
<td>• fully explain relevant details in the text that support the main</td>
</tr>
<tr>
<td>literary texts</td>
<td>chronological order.</td>
<td>idea.</td>
</tr>
<tr>
<td></td>
<td>• re-order events provided in chronological order texts into a different</td>
<td>• locate a single piece of evidence in the text.</td>
</tr>
<tr>
<td></td>
<td>order (e.g. cause-and-effect, etc.) in order to determine the text's</td>
<td>• locate multiple pieces of evidence in a text.</td>
</tr>
<tr>
<td></td>
<td>meaning.</td>
<td>• differentiate between relevant and irrelevant evidence.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• use evidence to support or challenge an author's conclusion.</td>
</tr>
<tr>
<td>RLA</td>
<td>Indicator</td>
<td>What to look for in student work: The student can</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>R.4.1/L.4.1:</td>
<td>Identify what a word means, specific to the sentence(s) that provides its context.</td>
<td>• distinguish between denotive and connotative meanings of a word.</td>
</tr>
<tr>
<td></td>
<td>Determine the meaning of words and phrases as they are used in a text, including determining connotative and figurative meanings from context.</td>
<td>• distinguish between denotive and connotative meanings of a word.</td>
</tr>
<tr>
<td></td>
<td>*Measured with both informational and literary texts.</td>
<td>• distinguish between connotative and figurative meanings of a word.</td>
</tr>
<tr>
<td>RLA</td>
<td>What to look for in student work: The student can</td>
<td>Social Studies</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>---------------</td>
</tr>
</tbody>
</table>
| R.5.3: Analyze transitional language or signal words (words that indicate structural relationships, such as consequently, nevertheless, otherwise) and determine how they refine meaning, emphasize certain ideas, or reinforce an author's purpose. *Measured with both informational and literary texts.* | • identify transitional words or phrases within texts.
• explain the function of transitional language as it is used in a specific text.
• explain why specific transitional word(s) were used to convey meaning.
• explain the structural relationship between two clauses or phrases in terms of their transitions.
• explain how structural cues within a text serve an author's purpose. | SSP.3.c: Analyze cause-and-effect relationships and multiple causation, including action by individuals, natural and societal processes, and the influence of ideas. | • identify (potential or actual) causes for given effects.
• identify (potential or actual) effects for a given cause.
• identify examples of cause-effect relationships in texts.
• fully explain how or why one event or set of circumstances in a cause-effect relationship caused another.
• fully explain a sequence of causes leading to a given effect.
• identify multiple causes of a given event or set of circumstances. | SP.4.a: Evaluate whether a conclusion or theory is supported or challenged by particular data or evidence. | • identify and explain why the evidence supports the proposed claim or solution.
• identify and explain which piece of data supports or contradicts the given hypothesis.
• identify multiple reasons a piece of evidence supports a theory or hypothesis and compare those reasons to each other.
• identify which scientific model would be weakened or strengthened by particular evidence.
• fully explain why given evidence supports a scientific theory.
• fully explain why given evidence challenges a scientific theory.
<table>
<thead>
<tr>
<th>RLA</th>
<th>Social Studies</th>
<th>Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>R.3.3: Evaluate the relevance and sufficiency of evidence offered in support of a claim. (Primarily measured with informational texts)</td>
<td>SSP.5.c: Analyze how a historical context shapes an author's point of view.</td>
<td>SP.6.a: Express scientific information or findings visually.</td>
</tr>
</tbody>
</table>
| • explain how a particular piece of evidence is relevant to a point an author is making.
• explain how a particular piece or pieces of evidence are sufficient to justify an author's singular point or overall message.
• distinguish between irrelevant and relevant evidence.
• distinguish between an idea that has sufficient evidence to support it and one that does not.
• distinguish between explanation and evidence.
• distinguish between reasoning and evidence.
• make judgments on either the relevance or sufficiency (or both) of single and multiple pieces of evidence. | • identify the author's point of view in a primary source text.
• identify the major eras in U.S. history relevant to a specific text and identify influential events, figures, and ideas therein.
• identify context (events, figures, ideas) relevant to the given text.
• fully explain how the historical context directly relates to the author's point of view. | • translate information presented verbally or numerically into a visual format.
• integrate information presented verbally and numerically into a visual format.
• identify relationships among graphs or diagrams.
• identify visual representations of scientific processes explained in a given text.
• complete diagrams to demonstrate understanding of relationships among variables, scientific concepts, or processes. |
<table>
<thead>
<tr>
<th>Indicator</th>
<th>What to look for in student work: The student can</th>
<th>Indicator</th>
<th>What to look for in student work: The student can</th>
<th>Indicator</th>
<th>What to look for in student work: The student can</th>
</tr>
</thead>
<tbody>
<tr>
<td>R.8.6: Identify an underlying premise or assumption in an argument and evaluate the logical support and evidence provided.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- identify explicit premises and assumptions inherent to an argument in a text.
- identify implicit premises and assumptions inherent to an argument in a text.
- explain what, if any, of an author's biases and assumptions are observable within a text.
- make judgments on whether any implicit premises or assumptions of an argument are justified (fully or partially) by evidence that is explicitly provided in the text. |
| **SSP.8.a:** Compare treatments of the same social studies topic in various primary and secondary sources, noting discrepancies between and among the sources. |
- identify a common topic in multiple sources.
- describe commonalities in treatment of a topic across multiple sources.
- identify differences in the way the sources treat the topic.
- fully explain how a given difference in treatment is meaningful to the understanding of the topic itself. |
| **SP.7:** Apply formulas from scientific theories. |
- solve for a variable within a scientific equation
- balance an equation.
- identify what changes will result if a variable within a scientific equation increases or decreases.
- identify relationships between variables in a scientific formula.
- interpret symbolic representations of information and scientific data. |
<table>
<thead>
<tr>
<th>Assessment Target</th>
<th>Indicators</th>
<th>What to look for in student work: The student can</th>
</tr>
</thead>
</table>
| Q.1 Apply number sense concepts, including ordering rational numbers, absolute value, multiples, factors, and exponents | • Q.1.a Order fractions and decimals, including on a number line.
• Q.1.b Apply number properties involving multiples and factors, such as using the least common multiple, greatest common factor, or distributive property to rewrite numeric expressions.
• Q.1.c Apply rules of exponents in numerical expressions with rational exponents to write equivalent expressions with rational exponents.
• Q.1.d Identify absolute value of a rational number as its distance from 0 on the number line and determine the distance between two rational numbers on the number line, including using the absolute value of their difference. | • Convert fractions to decimals or vice versa in order to compare them, and listed the original numbers in ascending order.
• Identify common factors and calculated the greatest common factor by multiplying common factors, and has also identify common multiples, including least common multiples.
• Select the appropriate rule(s) of exponents to apply to exponential expressions, and simplify exponential expressions using one or more rules of exponents.
• Identify the location of a rational number on the number line, created absolute value expressions to represent distances on the number line, and simplify absolute value expressions. |
<table>
<thead>
<tr>
<th>Assessment Target</th>
<th>Indicators</th>
<th>What to look for in student work: The student can</th>
</tr>
</thead>
</table>
| Q.3 Calculate and use ratios, percents and scale factors | • Q.3.a Compute unit rates. Examples include but are not limited to: unit pricing, constant speed, persons per square mile, BTUs per cubic foot.
• Q.3.b Use scale factors to determine the magnitude of a size change. Convert between actual drawings and scale drawings.
• Q.3.c Solve multistep, arithmetic, real-world problems using ratios or proportions including those that require converting units of measure.
• Q.3.d Solve two-step, arithmetic, real world problems involving percents. Examples include but are not limited to: simple interest, tax, markups and markdowns, gratuities and commissions, percent increase and decrease. | • identify the relationship between quantities, then divide appropriately to determine the unit rate defined by those quantities.
• create proportions to model problems involving scale, then calculate measurements using proportional reasoning, and has also calculate measurements using scale factors.
• create proportions to model real-world problems involving ratios and proportions, and use ratios, proportions, and proportional reasoning to calculate quantities relating to those problems.
• identify the relationships between quantities (including amount of change) in problems involving percent increase and decrease, and has calculated quantities stemming from those problems, as well as the amount of percent increase of decrease. |
<table>
<thead>
<tr>
<th>Assessment Target</th>
<th>Math Indicators</th>
<th>What to look for in student work: The student can</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q.4 Calculate dimensions, perimeter, circumference, and area of two-dimensional figures</td>
<td>Q.4.a Compute the area and perimeter of triangles and rectangles. Determine side lengths of triangles and rectangles when given area or perimeter.
Q.4.b Compute the area and circumference of circles. Determine the radius or diameter when given area or circumference
Q.4.c Compute the perimeter of a polygon. Given a geometric formula, compute the area of a polygon. Determine side lengths of the figure when given the perimeter or area.
Q.4.d Compute perimeter and area of 2-D composite geometric figures, which could include circles, given geometric formulas as needed.
Q.4.e Use the Pythagorean theorem to determine unknown side lengths in a right triangle.</td>
<td>• identify the dimensions of a geometric figure from a diagram, then substitute the values for those dimensions into the appropriate formula for geometric measurement, then calculate the resulting numerical expression.
• calculate the perimeter of polygons.
• identify the shapes that comprise a composite figure.</td>
</tr>
<tr>
<td>Q.5 Calculate dimensions, surface area, and volume of three-dimensional figures</td>
<td>Q.5.a When given geometric formulas, compute volume and surface area of rectangular prisms. Solve for side lengths or height, when given volume or surface area.
Q.5.b When given geometric formulas, compute volume and surface area of cylinders. Solve for height, radius, or diameter when given volume or surface area.
Q.5.c When given geometric formulas, compute volume and surface area of right prisms. Solve for side lengths or height, when given volume or surface area.
Q.5.d When given geometric formulas, compute volume and surface area of right pyramids and cones. Solve for side lengths, height, radius, or diameter when given volume or surface area.
Q.5.e When given geometric formulas, compute volume and surface area of spheres. Solve for radius or diameter when given the surface area.
Q.5.f Compute surface area and volume of composite 3-D geometric figures, given geometric formulas as needed.</td>
<td></td>
</tr>
<tr>
<td>Assessment Target</td>
<td>Math Indicators</td>
<td>What to look for in student work: The student can</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| A.3 Write, manipulate, solve, and graph linear inequalities | • A.3.a Solve linear inequalities in one variable with rational number coefficients.
• A.3.b Identify or graph the solution to a one variable linear inequality on a number line.
• A.3.c Solve real-world problems involving inequalities.
• A.3.d Write linear inequalities in one variable to represent context. | • solve inequalities in one variable, using the standard algorithms.
• solve a one-variable inequality and identified or created a graph on the number line of the solution.
• analyze the relationship between quantities in a real-world problem, and then create an inequality to model the problem situation.
• analyze the relationship between quantities in a real-world problem, and then solve the problem through algebraic reasoning. |
<table>
<thead>
<tr>
<th>Assessment Target</th>
<th>Indicators</th>
<th>What to look for in student work: The student can</th>
</tr>
</thead>
</table>
| A.7 Compare, represent, and evaluate functions | • A.7.a Compare two different proportional relationships represented in different ways. Examples include but are not limited to: compare a distance-time graph to a distance-time equation to determine which of two moving objects has a greater speed.
• A.7.b Represent or identify a function in a table or graph as having exactly one output (one element in the range) for each input (each element in the domain).
• A.7.c Evaluate linear and quadratic functions for values in their domain when represented using function notation.
• A.7.d Compare properties of two linear or quadratic functions each represented in a different way (algebraically, numerically in tables, graphically or by verbal descriptions). Examples include but are not limited to: given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change. | • identify functions and non-functions displayed in graphs and tables, and create functions (graphs/tables).
• substitute values for variables in functions and evaluate the resulting numerical expressions.
• convert functional representations from one form to another, and compare properties of the functions. |